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Abstract: The calculation method of the resistance between two points on an infinite grid has 
attracted many mathematicians for its promising engineering application. To calculate the resistance, 
the voltage function on the infinite grid should be calculated first given the current flowing in and 
out. The voltage function is a potential energy function, indicating that the choice of its zero point 
for a certain case is troublesome. In this paper, we consider the infinite network 𝑍𝑍2 and define the 
voltage function in the space 𝑙𝑙2(𝑍𝑍2). Then we prove that the proposed voltage function is a 
pointwise limit and a limit in norm in another space 𝐷𝐷/ℝ of the voltage function on a series of finite 
wire subgraphs, which makes its physical image clear. Based on the convergence of voltage 
function, we prove that the pseudoinverse operator of such square grids is convergent in strong 
operator topology from a certain dense subspace of 𝑙𝑙2(𝑍𝑍2) to the Hilbert space 𝐷𝐷/ℝ. 

1. Introduction 
On a finite grid, voltage function determines the current flowing into a certain point and out of 

another one. The voltage function cannot be completely determined, because two voltage functions 
with constant difference produce the same current flow. In this paper, the voltage functions in 
l2(∆N) that are orthogonal to e�N are considered. The consideration behind this is e�N is the only 
eigenvector of the Laplacian matrix of a finite grid with eigenvalue zero. So, on the 
orthocomplement of e�N the Laplacian transform that transforms the voltage function to the current 
function becomes invertible, and we can find the uniquely determined voltage function that 
produces the current flow. 

Obviously d((x1,y1),(x2,y2))=|x1-x2|+|y1-y2|is a metric on Z2 and if d((x1,y1),(x2,y2))=1, the two 
points (x1,y1) and (x2,y2) are defined to be adjacent. In this paper, the network 𝑍𝑍2 is the graph 
generated by adding an edge between any two adjacent points in 𝑍𝑍2.It is assumed that every edge 
has the same unit resistance. And ∆N is the subgraph with the vertices in {(x, y)∈Z2||x|,|y|≤N}. 
For example, the diagram of the ∆1 and ∆2 is: 

 
∆1                                                                ∆2 

Fig.1 The Diagram of the ∆1 and ∆2 

There are (2N+1)2 points in the square ∆N and we consider the subspace of l2(Z2), that is 
l2(∆N) which is made up of functions in l2(Z2) supported in ∆N. Let 𝐻𝐻∆N the Laplacian matrix of 
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graph ∆N. Let 𝐻𝐻∆N
†  be the pseudoinverse of 𝐻𝐻∆N . The wired graph of ∆N , ∆N

w , is the graph 
generated by identifying all the points in ∆N

c  as one single point 𝑧𝑧𝑛𝑛. Let H∆N
w the Laplacian matrix 

of graph ∆N
w. Let H∆N

w
†  be the pseudoinverse of H∆N

w. 
Define a special set of functions in l2(Z2): 

𝑆𝑆 = {𝑒𝑒𝑎𝑎|𝑒𝑒𝑎𝑎(𝑎𝑎) = 1, 𝑒𝑒𝑎𝑎 = 0 elsewhere} 

Consider the Laplacian operator on l2(Z2): 

𝐻𝐻𝑍𝑍2: 𝑙𝑙2(𝑍𝑍2) → 𝑙𝑙2(𝑍𝑍2) 

𝑓𝑓 ↦ 𝐻𝐻𝑍𝑍2(𝑓𝑓) 

with 

𝐻𝐻𝑍𝑍2(𝑓𝑓)(𝑚𝑚) = � 𝑓𝑓(𝑚𝑚) − 𝑓𝑓(𝑛𝑛)
𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎 𝑎𝑎𝑡𝑡 𝑚𝑚

(1) 

It can also be observed that 

𝐻𝐻∆𝑁𝑁(𝑓𝑓)(𝑚𝑚) = � 𝑓𝑓(𝑚𝑚) − 𝑓𝑓(𝑛𝑛)
𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎 𝑎𝑎𝑡𝑡 𝑚𝑚

𝑚𝑚,𝑛𝑛∈∆𝑁𝑁

(2)
 

𝐻𝐻∆𝑁𝑁
𝑤𝑤(𝑓𝑓)(𝑚𝑚) = � 𝑓𝑓(𝑚𝑚) − 𝑓𝑓(𝑛𝑛)

𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎 𝑎𝑎𝑡𝑡 𝑚𝑚
𝑚𝑚,𝑛𝑛∈∆𝑁𝑁

𝑤𝑤

(3)
 

So, if there is a unit current flows into a point a and out of another point z, and on the subgraph 
∆N, the corresponding voltage on the vertices is the function v∈l2(∆N), we have: 

𝐻𝐻∆𝑁𝑁(𝑣𝑣) = 𝑒𝑒𝑎𝑎 − 𝑒𝑒𝑧𝑧 

Define another set of current source functions S1= {f |f=ea-ez, for some a and z}. Any function 
in the set is corresponding to a unit flow. Because ea-ez∈e�N

⊥, we have: 

𝑣𝑣 = 𝐻𝐻∆N
† (𝑒𝑒𝑎𝑎 − 𝑒𝑒𝑧𝑧) 

It should be noticed that this voltage function can vary within a constant difference to produce 
the same current flow. 

For general graphs G = (V, E) where V is the set of vertices and E is the set of edges. Assume 
that each edge has two orientations e, -e and both e, -e∈E  are assigned with a same resistance 
r(e)≥0. Let e+ and e- be the start point and end point of the oriented edge e. Define the Hilbert 
space of antisymmetric current functions on E: 

𝑙𝑙−2(𝐸𝐸, 𝑟𝑟) = {𝜃𝜃|𝜃𝜃(𝑒𝑒) = −𝜃𝜃(−𝑒𝑒)} (4) 
And the space has the inner product: 

(𝜃𝜃1, 𝜃𝜃2)𝑟𝑟 =
1
2
�𝑟𝑟(𝑒𝑒)𝜃𝜃1(𝑒𝑒)𝜃𝜃2(𝑒𝑒)
𝑎𝑎∈𝐸𝐸

(5) 

The corresponding norm is 

||𝜃𝜃1||𝑟𝑟 = �
1
2
�𝑟𝑟(𝑒𝑒)𝜃𝜃1(𝑒𝑒)2
𝑎𝑎∈𝐸𝐸

�
0.5

(6) 

Obviously, on the infinite network Z2, the norm of a current flow generated by a voltage 
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function is as follows: 

||𝑖𝑖||𝑟𝑟 = �
1
2

� 𝑟𝑟(𝑒𝑒)i(𝑒𝑒)2
𝑎𝑎∈𝐸𝐸(𝑍𝑍2)

�

0.5

= � � �𝑣𝑣(𝑚𝑚) − 𝑣𝑣(𝑛𝑛)�2

𝑚𝑚 𝑎𝑎𝑛𝑛𝑎𝑎 𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎

�

0.5

 

Define the operator from l2(V) to l-
2(E, r): 

𝑑𝑑: 𝑙𝑙2(𝑉𝑉) →  𝑙𝑙−2(𝐸𝐸, 𝑟𝑟) 

𝑑𝑑(𝑣𝑣)(𝑒𝑒) = 𝑣𝑣(𝑒𝑒+) − 𝑣𝑣(𝑒𝑒−) 
As is to be shown in section 2, random walks on a network are closely related to the voltage 

functions[1,2]. 

2. The Limit of Voltage and Current for Finite Graphs 

In the following statement, v refers to voltage, i refers to current, R refers to resistance, C 
refers to conductance, P refers the probability function of the associated random walk. 

Theorem 2.1[3]. On a finite network a current flows into a vertex 𝑎𝑎 and flows out of another 
vertex 𝑧𝑧 with unit voltage (v(a)=1, v(z)=0), then for every x∈V(G) , v(x)=Px[τa<τz]. 

Theorem 2.2[3]. On a finite network a current flows into a vertex 𝑎𝑎 and flows out of another set 
of vertices 𝑍𝑍 with unit voltage (v(A)=1, v(Z)=0) then C(a↔Z)=π(a)Pa[τZ<τa+]. 

Theorem 2.3[3]. On a finite network 𝐸𝐸 a current flows into a set of vertices 𝐴𝐴 and flows out of 
another set of vertices 𝑍𝑍 with unit voltage (v(A)=1, v(Z)=0), then 

R(A↔Z)=min {||θ||r
2; θ is a unit flow from A to Z} 

And the minimum is achieved when the flow equals to the current flow 𝑖𝑖 from 𝐴𝐴 to 𝑍𝑍, and for 
any flow θ, ||θ||r

2=||θ-i||r
2
+||i||r

2 
Theorem 2.4[3]. Gn is an exhaustion of a recurrent network and Gn

W is the graph obtained from 
𝐺𝐺 by identifying the vertices outside Gn to a single vertex zn. Then for any fixed vertex 𝑎𝑎 that 
lies in every finite graph Gn, R(a↔zn)→∞. 

Theorem 2.5[3]. Let A and Z be two sets of vertices in a finite network, then for any vertex 
x∉A∪Z, we have 

𝑃𝑃𝑥𝑥[𝜏𝜏𝐴𝐴 < 𝜏𝜏𝑍𝑍] ≤
𝐶𝐶(𝑥𝑥 ↔ 𝐴𝐴)

𝐶𝐶(𝑥𝑥 ↔ 𝐴𝐴 ∪ 𝑍𝑍) =
𝑅𝑅(𝑥𝑥 ↔ 𝐴𝐴 ∪ 𝑍𝑍)
𝑅𝑅(𝑥𝑥 ↔ 𝐴𝐴)

(7) 

Theorem 2.6[3]: G is a recurrent network with an exhaustion by subnetworks Gn  and a, 
z∈V(Gn) for all n. Let vn be the voltage function on Gn that induced by a unit voltage at a and 
0 voltage at z. Let in be the unit current flow on Gn from a to z, then: 

(a) v= lim
n→∞

vn exists pointwise and that v(x)=Px[τa<τz] for all x ∈ V. 
(b) i= lim

n→∞
in exists pointwise and the sequence converges in norm. 

(c) ε(i)dv=ir. 
Proof: 
(a) Due to theorem 1, vn(x)=Px

n[τa<τz], here Px
n denotes the probability function of random 

walk on the finite graph Gn started at vertex x. Now consider two random walks, X on Gn and 
Y on G starting at x, and τ=min{t|Yt∉Gn} is the first escaping time of Y. Let Xt=Yt(t<τ) and 
after τ let X be a random walk on Gn. Then we have: 

𝑣𝑣𝑛𝑛(𝑥𝑥) = 𝑃𝑃𝑋𝑋[𝜏𝜏𝑎𝑎 < 𝜏𝜏𝑧𝑧] 

𝑣𝑣(𝑥𝑥) = 𝑃𝑃𝑌𝑌[𝜏𝜏𝑎𝑎 < 𝜏𝜏𝑧𝑧] 
And 
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𝑃𝑃𝑌𝑌[𝜏𝜏𝑎𝑎 < 𝜏𝜏𝑧𝑧] = 𝑃𝑃𝑌𝑌[𝜏𝜏𝑎𝑎 < 𝜏𝜏𝑧𝑧 < 𝜏𝜏] + 𝑃𝑃𝑌𝑌[𝜏𝜏𝑎𝑎 < 𝜏𝜏 < 𝜏𝜏𝑧𝑧] + 𝑃𝑃𝑌𝑌[𝜏𝜏 < 𝜏𝜏𝑎𝑎 < 𝜏𝜏𝑧𝑧] 

𝑃𝑃𝑋𝑋[𝜏𝜏𝑎𝑎 < 𝜏𝜏𝑧𝑧] = 𝑃𝑃𝑋𝑋[𝜏𝜏𝑎𝑎 < 𝜏𝜏𝑧𝑧 < 𝜏𝜏] + 𝑃𝑃𝑋𝑋[𝜏𝜏𝑎𝑎 < 𝜏𝜏 < 𝜏𝜏𝑧𝑧] + 𝑃𝑃𝑋𝑋[𝜏𝜏 < 𝜏𝜏𝑎𝑎 < 𝜏𝜏𝑧𝑧] 
Notice that 

𝑃𝑃𝑌𝑌[𝜏𝜏𝑎𝑎 < 𝜏𝜏𝑧𝑧 < 𝜏𝜏] = 𝑃𝑃𝑋𝑋[𝜏𝜏𝑎𝑎 < 𝜏𝜏𝑧𝑧 < 𝜏𝜏] 

𝑃𝑃𝑌𝑌[𝜏𝜏𝑎𝑎 < 𝜏𝜏 < 𝜏𝜏𝑧𝑧] = 𝑃𝑃𝑋𝑋[𝜏𝜏𝑎𝑎 < 𝜏𝜏 < 𝜏𝜏𝑧𝑧] 
So 
|𝑣𝑣(𝑥𝑥) − 𝑣𝑣𝑛𝑛(𝑥𝑥)| ≤ 𝑃𝑃𝑌𝑌[𝜏𝜏 < 𝜏𝜏𝑎𝑎 < 𝜏𝜏𝑧𝑧] + 𝑃𝑃𝑋𝑋[𝜏𝜏 < 𝜏𝜏𝑎𝑎 < 𝜏𝜏𝑧𝑧] ≤ 2𝑃𝑃𝑌𝑌[𝜏𝜏 < 𝜏𝜏𝑎𝑎, 𝜏𝜏 < 𝜏𝜏𝑧𝑧] = 2𝑃𝑃𝑌𝑌[𝜏𝜏 < 𝜏𝜏𝑎𝑎] 
And it can be observed that 

𝑃𝑃𝑥𝑥|𝐺𝐺𝑛𝑛𝑊𝑊�𝜏𝜏𝑧𝑧𝑛𝑛 < 𝜏𝜏𝑎𝑎� = 2𝑃𝑃𝑌𝑌[𝜏𝜏 < 𝜏𝜏𝑎𝑎] 

According Theorem 5 we have 

𝑃𝑃𝑥𝑥|𝐺𝐺𝑛𝑛𝑊𝑊�𝜏𝜏𝑧𝑧𝑛𝑛 < 𝜏𝜏𝑎𝑎� ≤
𝑅𝑅𝑛𝑛𝑊𝑊(𝑥𝑥 ↔ 𝑎𝑎 ∪ 𝑧𝑧𝑛𝑛)
𝑅𝑅𝑛𝑛𝑊𝑊(𝑥𝑥 ↔ 𝑧𝑧𝑛𝑛)  

where Rn denotes resistance on finite network Gn
W. Now according to Theorem 3 

𝑅𝑅𝑛𝑛𝑊𝑊(𝑥𝑥 ↔ 𝑎𝑎 ∪ 𝑧𝑧𝑛𝑛) = min �||𝜃𝜃𝑛𝑛𝑊𝑊||r
2;  𝜃𝜃𝑛𝑛𝑊𝑊 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑓𝑓𝑙𝑙𝑓𝑓𝑓𝑓 𝑓𝑓𝑟𝑟𝑓𝑓𝑚𝑚 𝑥𝑥 ↔ 𝑎𝑎 ∪ 𝑧𝑧𝑛𝑛� 

𝑅𝑅𝑛𝑛𝑊𝑊(𝑥𝑥 ↔ 𝑎𝑎) = min �||𝛼𝛼𝑛𝑛𝑊𝑊||r
2;  𝛼𝛼𝑛𝑛𝑊𝑊 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑓𝑓𝑙𝑙𝑓𝑓𝑓𝑓 𝑓𝑓𝑟𝑟𝑓𝑓𝑚𝑚 𝑥𝑥 ↔ 𝑎𝑎 ∪ 𝑧𝑧𝑛𝑛� 

θn
W is a flow on Gn

W from x to a∪zn, and αn
W is a flow from x to 𝑎𝑎. It can be observed that 

αn
W is also a flow from x to a∪zn, so we have 

𝑅𝑅𝑛𝑛𝑊𝑊(𝑥𝑥 ↔ 𝑎𝑎 ∪ 𝑧𝑧𝑛𝑛) ≤ 𝑅𝑅𝑛𝑛𝑊𝑊(𝑥𝑥 ↔ 𝑎𝑎) 
And also 

𝑅𝑅𝑛𝑛(𝑥𝑥 ↔ 𝑎𝑎) = min� � 𝑟𝑟(𝑒𝑒)𝜃𝜃𝑛𝑛(𝑒𝑒)2
𝑎𝑎∈𝐺𝐺𝑛𝑛1

2

� 

Here θn is a flow on Gn and it is naturally a flow on Gn
W(just let the flow on the edges in 

Gn
W\Gn be 0), so 

𝑅𝑅𝑛𝑛𝑊𝑊(𝑥𝑥 ↔ 𝑎𝑎) ≤ 𝑅𝑅𝑛𝑛(𝑥𝑥 ↔ 𝑎𝑎) 

Also, θn is a flow on Gn+1(just let the flow on the edges in Gn+1\Gn be 0), so 

𝑅𝑅𝑛𝑛+1(𝑥𝑥 ↔ 𝑎𝑎) ≤ 𝑅𝑅𝑛𝑛(𝑥𝑥 ↔ 𝑎𝑎) 

Because G is recurrent, 

lim
𝑛𝑛→∞

𝑅𝑅𝑛𝑛𝑊𝑊(𝑥𝑥 ↔ 𝑧𝑧𝑛𝑛) = ∞ 

So 

lim
𝑛𝑛→∞

𝑅𝑅𝑛𝑛𝑊𝑊(𝑥𝑥 ↔ 𝑎𝑎 ∪ 𝑧𝑧𝑛𝑛)
𝑅𝑅𝑛𝑛𝑊𝑊(𝑥𝑥 ↔ 𝑧𝑧𝑛𝑛) ≤ lim

𝑛𝑛→∞

𝑅𝑅𝑛𝑛(𝑥𝑥 ↔ 𝑎𝑎)
𝑅𝑅𝑛𝑛𝑊𝑊(𝑥𝑥 ↔ 𝑧𝑧𝑛𝑛) ≤ lim

𝑛𝑛→∞

𝑅𝑅1(𝑥𝑥 ↔ 𝑎𝑎)
𝑅𝑅𝑛𝑛𝑊𝑊(𝑥𝑥 ↔ 𝑧𝑧𝑛𝑛) = 0 

That is 
𝑣𝑣(𝑥𝑥) = lim

𝑛𝑛→∞
𝑣𝑣𝑛𝑛 (𝑥𝑥) = lim

𝑛𝑛→∞
𝑣𝑣𝑛𝑛 (𝑥𝑥) = lim

𝑛𝑛→∞
𝑃𝑃𝑥𝑥𝑛𝑛[𝜏𝜏𝑎𝑎 < 𝜏𝜏𝑧𝑧] = 𝑃𝑃𝑥𝑥[𝜏𝜏𝑎𝑎 < 𝜏𝜏𝑧𝑧] (8) 

(b)Because in is a flow on Gn, it is naturally a flow on Gn+1(just let the flow on the edges in 
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Gn+1\Gn be 0), and it is obviously in l-
2(G)(just let the flow on the edges in G\Gn be 0), so by 

Theorem 3, ||in||r≥||in+1||r and ||in||r
2=||in-in+1||r

2
+||in+1||r

2. 
So ||in||r is a positive decreasing Cauchy sequence in ℝ, and thus {in} is a Cauchy sequence in 

the Banach space l-
2(G), so it has a limit i∈l-

2(G). 
(c)It is obvious that 𝜀𝜀(in)dvn(e)=inr(e) is the Ohm’s law. Because in and vn have pointwise 

limit and 𝜀𝜀(in)=||in||r
2 if in is regarded as a flow on G, so the limit situation is: 

𝜀𝜀(𝑖𝑖)𝑑𝑑𝑣𝑣 = 𝑖𝑖𝑟𝑟 (9) 

Theorem 2.7[3] Let 𝐺𝐺𝑛𝑛𝑤𝑤 be the graph obtained from G by identifying the vertices 𝐺𝐺𝑛𝑛 into one 
vertex 𝑧𝑧𝑛𝑛, Let 𝑖𝑖𝑛𝑛𝑤𝑤 be the unit current flow on Gn from a to z, then 𝑖𝑖𝑛𝑛𝑤𝑤 → 𝑖𝑖 in norm. 

Theorem 2.6 and 2.7 shows that the resistance of two points on a sequence of exhaustion graphs 
converges to a limit, and it can be defined as the resistance between these two points on the infinite 
graph. When the infinite network is defined to be Z2, many papers show the similar result[4] that the 
resistance between two nodes on ∆N converges to a limit. 

 
Fig.2 The Resistance between Point (0,0) and (0,1) on ∆n Converges to 1/2 

 
Fig.3 The Resistance between Point (0,0) and (0,2) on ∆n Converges to 2-4/Π 

3. The Voltage Function in 𝒍𝒍𝟐𝟐(𝒁𝒁𝟐𝟐) 

Consider the Fourier transform:l2(Z2)→L2([0,2π]2) 

𝑎𝑎 → � 𝑎𝑎(𝑚𝑚,𝑛𝑛)𝑒𝑒−𝑖𝑖(𝑚𝑚𝑥𝑥+𝑛𝑛𝑛𝑛)

(𝑚𝑚,𝑛𝑛)∈𝑍𝑍2
(10) 

183



It is an isometry and many articles[5] use this fact to solve for solutions in function spaces l2�Z2� 
HZ2  is an operator on l2�Z2�  and thus can induce an operator on L2([0,2π]2) . The 

corresponding operator of HZ2 on the space L2([0,2π]2) is: 

ℎ: 𝐿𝐿2([0,2𝜋𝜋]2) → 𝐿𝐿2([0,2𝜋𝜋]2) 

𝑓𝑓 ⟼ (−2𝑐𝑐𝑓𝑓𝑖𝑖𝑥𝑥 − 2𝑐𝑐𝑓𝑓𝑖𝑖𝑐𝑐 + 4)𝑓𝑓 
That is 

Ψ�𝐻𝐻𝑍𝑍2(𝑣𝑣)� = (−2𝑐𝑐𝑓𝑓𝑖𝑖𝑥𝑥 − 2𝑐𝑐𝑓𝑓𝑖𝑖𝑐𝑐 + 4) ∗ Ψ(v) (11) 

For a current flowing into point a=(m1,n1) and out of point z=(m2,n2) then the corresponding 
voltage function in l2�Z2� is 

𝑣𝑣 = Ψ−1 �
𝑒𝑒−𝑖𝑖(𝑚𝑚1𝑥𝑥+𝑛𝑛1𝑛𝑛) − 𝑒𝑒−𝑖𝑖(𝑚𝑚2𝑥𝑥+𝑛𝑛2𝑛𝑛)

(−2𝑐𝑐𝑓𝑓𝑖𝑖𝑥𝑥 − 2𝑐𝑐𝑓𝑓𝑖𝑖𝑐𝑐 + 4) � (12) 

Obviously, 

𝑒𝑒−𝑖𝑖(𝑚𝑚1𝑥𝑥+𝑛𝑛1𝑛𝑛) − 𝑒𝑒−𝑖𝑖(𝑚𝑚2𝑥𝑥+𝑛𝑛2𝑛𝑛)

(−2𝑐𝑐𝑓𝑓𝑖𝑖𝑥𝑥 − 2𝑐𝑐𝑓𝑓𝑖𝑖𝑐𝑐 + 4)  

=
(cos(𝑚𝑚1𝑥𝑥 + 𝑛𝑛1𝑐𝑐) − cos(𝑚𝑚2𝑥𝑥 + 𝑛𝑛2𝑐𝑐)) − 𝑖𝑖(sin(𝑚𝑚1𝑥𝑥 + 𝑛𝑛1𝑐𝑐) − sin(𝑚𝑚2𝑥𝑥 + 𝑛𝑛2𝑐𝑐))

(−2𝑐𝑐𝑓𝑓𝑖𝑖𝑥𝑥 − 2𝑐𝑐𝑓𝑓𝑖𝑖𝑐𝑐 + 4)  

=
𝑂𝑂(|𝑚𝑚1 −𝑚𝑚2|𝑥𝑥 + |𝑛𝑛1 − 𝑛𝑛2|𝑐𝑐)

𝑂𝑂(𝑥𝑥2 + 𝑐𝑐2)
 

This function is not always locally L2 integrable near the origin point (0,0). 
This means HZ2 is not invertible on l2�Z2�, which matches the result that 0 lies in the spectral 

of HZ2
⑥. So, this method is not rigorous, though it has been widely used to calculate the voltage 

function on 𝑍𝑍2⑦. The following section shows that if the Hilbert space l2�Z2� is appropriately 
changed into other spaces, the inverse of operator HZ2 can be well-defined and be the limit of the 
pseudoinverse of the Laplacian matrices of a sequence of finite graphs. 

4. The Pseudoinverse Operator in 𝑫𝑫/ℝ 
Define the Dirichlet functions space on vertices of the graph: 

𝐷𝐷 = {𝑓𝑓; 𝑐𝑐𝑑𝑑𝑓𝑓 ∈ 𝑙𝑙−2(𝐸𝐸, 𝑟𝑟)} (13) 

Dirichlet functions space is a Hilbert space with the inner product: 

< 𝑓𝑓,𝑔𝑔 ≥ 𝑓𝑓(𝑓𝑓)𝑔𝑔(𝑓𝑓) + (𝑐𝑐𝑑𝑑𝑓𝑓, 𝑐𝑐𝑑𝑑𝑔𝑔)𝑟𝑟 (14) 
Where o is an arbitrary point in the vertices set of the graph. 
Obviously, the space l2(V) is a subspace of D, also the constant functions space ℝ is a closed 

subspace in Dirichlet functions space, and there is a natural inner product in Hilbert space 𝐷𝐷/ℝ 
inherited from D: 

< 𝑓𝑓 + ℝ,𝑔𝑔 + ℝ >= (𝑐𝑐𝑑𝑑𝑓𝑓, 𝑐𝑐𝑑𝑑𝑔𝑔)𝑟𝑟 

Theorem 4.1 If the Dirichlet function space is defined on network Z2, the only harmonic 
function in D is constant[3]. 

Theorem 4.2 𝑆𝑆1 = {f+ℝ∈D/ℝ; f(a)=1, f(z)=-1, f=0 elsewhere} is dense in D/ℝ and l2(Z2). 
Proof: 
Consider D⊥ in the Hilbert space D. Define the set of functions: 
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𝑆𝑆2={𝑒𝑒𝑥𝑥∈D; 𝑒𝑒𝑥𝑥(x)=1,𝑒𝑒𝑥𝑥=0 elsewhere} 

Obviously, if the function g∈S1
⊥in 𝐷𝐷/ℝ, then: 

< 𝑔𝑔 + ℝ, 𝑒𝑒𝑎𝑎 − 𝑒𝑒𝑧𝑧 + ℝ >= 0 

< 𝑔𝑔 + ℝ, 𝑒𝑒𝑎𝑎 + ℝ >=< 𝑔𝑔 + ℝ, 𝑒𝑒𝑧𝑧 + ℝ > 
For any a and z, and because 

< 𝑔𝑔 + ℝ,𝑔𝑔 + ℝ >< ∞ 
So, 

lim
|𝑎𝑎|→∞

< 𝑔𝑔 + ℝ, 𝑒𝑒𝑎𝑎 + ℝ >= 0 

Then 

< 𝑔𝑔 + ℝ, 𝑒𝑒𝑧𝑧 + ℝ >= 0 
For any z in the graph. So 

𝑔𝑔(𝑧𝑧) = � 𝑐𝑐(𝑧𝑧,𝑐𝑐)
𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎 𝑎𝑎𝑡𝑡 𝑧𝑧

𝑔𝑔(𝑐𝑐) 

g is a harmonic function in D, so 

𝑔𝑔 ∈ ℝ 

This means S1 is dense in D/ℝ. 
Consider the map: 

𝐻𝐻𝑍𝑍2: 𝑙𝑙2(𝑍𝑍2) → 𝑙𝑙2(𝑍𝑍2) 

Obviously, the domain of the operator can be extended to 𝐷𝐷, because: 

||HZ2(𝑓𝑓)||𝑙𝑙2�𝑍𝑍2�
2 = � � � �𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑐𝑐)�

𝑥𝑥,𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎

�

2

𝑥𝑥∈𝑍𝑍2
≤ ||𝑓𝑓||𝐷𝐷2  

So HZ2 is the continuous map from D to l2�Z2�. Because 

HZ2(ℝ) = 0 

We have a naturally defined bounded operator: 

𝐻𝐻𝑍𝑍2� :𝐷𝐷/ℝ → 𝑙𝑙2(𝑍𝑍2) 

𝐻𝐻𝑍𝑍2� (𝑓𝑓 + ℝ) = HZ2(𝑓𝑓) 

Also, we can extend the definition of the pseudoinverse H∆𝑁𝑁
𝑤𝑤

†  so that it will be a bounded 
operator from S1 to D. Assume that  f(a)=1,  f(z)=-1, f=0 elsewhere and the vertices a and z lies in 
∆𝑁𝑁 (Because ∆N is an exhaustion of Z2, so for any f there is a ∆N large enough to contain a and 
z). 

𝐻𝐻∆𝑁𝑁𝑤𝑤
†� (𝑓𝑓)(𝑓𝑓) = �

𝐻𝐻∆𝑁𝑁𝑤𝑤
† (𝑓𝑓)(𝑓𝑓) ; 𝑓𝑓 ∈ ∆𝑁𝑁

𝐻𝐻∆𝑁𝑁𝑤𝑤
† (𝑓𝑓)(𝑧𝑧𝑛𝑛) ; 𝑓𝑓 ∉ ∆𝑁𝑁

 

Define 

𝐻𝐻∆𝑁𝑁𝑤𝑤
†� : 𝑆𝑆1 → 𝐷𝐷/ℝ 
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𝐻𝐻∆𝑁𝑁𝑤𝑤
†� (𝑓𝑓) = 𝐻𝐻∆𝑁𝑁𝑤𝑤

†� (𝑓𝑓) + ℝ 

So that 

||𝐻𝐻∆𝑁𝑁𝑤𝑤
†� (𝑓𝑓)||𝐷𝐷 ℝ⁄

2 = ||𝐻𝐻∆𝑁𝑁𝑤𝑤
†� (𝑓𝑓) + ℝ||𝐷𝐷 ℝ⁄

2  

= � ( � �𝐻𝐻∆𝑁𝑁𝑤𝑤
†� (𝑓𝑓)(𝑥𝑥) − 𝐻𝐻∆𝑁𝑁𝑤𝑤

†� (𝑓𝑓)(𝑐𝑐)�
𝑥𝑥,𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎

𝑥𝑥,𝑛𝑛∈∆𝑁𝑁

2
+

𝑥𝑥∈𝑍𝑍2
� �𝐻𝐻∆𝑁𝑁𝑤𝑤

†� (𝑓𝑓)(𝑥𝑥) − 𝐻𝐻∆𝑁𝑁𝑤𝑤
†� (𝑓𝑓)(𝑧𝑧𝑛𝑛)�

𝑥𝑥,𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎
𝑥𝑥∈∆𝑁𝑁,𝑛𝑛∉∆𝑁𝑁

2
) 

= � 𝑖𝑖𝑁𝑁𝑤𝑤(𝑒𝑒)2

𝑎𝑎∈∆𝑁𝑁
𝑤𝑤

= ||𝑖𝑖𝑁𝑁𝑤𝑤||𝑟𝑟2 

Where iNw is a unit flow from a to z. 

Theorem 4.3 the operator H∆N
w

†�  converges to HZ2� -1 in the strong operator topology from normed 
linear space spanned by S1, which is dense in l2�Z2�, to the space D/ℝ. 

Proof: 
From theorem 2.6 and theorem 2.7, if I∈S1, there is a limit voltage in D function on Z2 that: 

HZ2(𝑣𝑣) = 𝐼𝐼 

Because 

||𝑣𝑣||𝐷𝐷2 = 𝑣𝑣(𝑓𝑓)2 + � � � �𝑣𝑣(𝑥𝑥) − 𝑣𝑣(𝑐𝑐)�
𝑥𝑥,𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎

�

2

𝑥𝑥∈𝑍𝑍2
= 𝑣𝑣(𝑓𝑓)2 + ||𝑐𝑐𝑑𝑑𝑣𝑣||𝑟𝑟2 = 𝑣𝑣(𝑓𝑓)2 + ||𝑖𝑖||𝑟𝑟2 < ∞ 

So, v ∈D, and for any other function in D that: 

HZ2(𝑣𝑣) = HZ2(𝑢𝑢) = 𝐼𝐼 

Then u-v ∈D and u-v is harmonic. From theorem 4.1, we have: 

𝑢𝑢 − 𝑣𝑣 ∈ ℝ 

Then v+ℝ is the only function in D/ℝ that satisfies: 

𝐻𝐻𝑍𝑍2� (𝑣𝑣 + ℝ) = 𝐼𝐼 

So, HZ2� -1 is well defined from S1 to D/ℝ. 
Then, from theorem 2.7 we get that for any function f in S1 

lim
𝑛𝑛→∞

||𝐻𝐻∆𝑁𝑁𝑤𝑤
†� (𝑓𝑓) − 𝐻𝐻𝑍𝑍2�

−1(𝑓𝑓)||𝐷𝐷 ℝ⁄
2 = lim

𝑛𝑛→∞
||𝑖𝑖𝑁𝑁𝑤𝑤 − 𝑖𝑖||𝑟𝑟2 = 0 

So, the operator H∆N
w

†�  converges to HZ2� -1 in the strong operator topology from normed linear 
space spanned by S1 to the space D/ℝ. 

5. Conclusion 
This paper gives a proper definition of the voltage function of a corresponding current flow and 

proves that there is a series of finite grids as an exhaustion of Z2 that on this series of finite grids, 
the resistance between two given points converges to the resistance on infinite grid Z2 calculated 
using voltage function defined in space l2�Z2�. This makes the physical image of the defined 
voltage function on Z2 clear because it is the limit situation of finite grids. This result also shows 
that in a specially defined operator topology, the pseudoinverse operators of the Laplacians of a 
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sequence of wired graphs converges. 
Notations 

Notations Meaning 
l2(Z2) the L2  space on Z2 with the counting measure. 
l2(∆) functions inl2(Z2) that are supported in ∆ 
∆N square centered at (0,0)with side length 2N 

+1 
�̂�𝑒𝑁𝑁 function in l2(∆N) where 

�̂�𝑒𝑁𝑁(m)= �1;  m ∈ ∆N
0;  m ∉ ∆N

 

∆ is a subset of Z2 
τx the first time that a random walk reaches x 
τx+ the first positive time that a random walk 

starting at x reaches x 
H∆N Laplacian matrix of graph ∆N 
H∆N

†  pseudoinverse of 
Laplacian matrix of graph ∆N 

HZ2 graph Laplacian of Z2 
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